

**Case Study** 

Available online <u>www.ijrpsonline.com</u>

ISSN: 2249-3522

International Journal of Research in Pharmacy and Science

## Hepatitis B Surface Antigen Carrier State among Asymptomatic Pregnant Women and Its Correlation with Vertical Transmission

Sasirekha Bakthavatchalu\*

Department of Microbiology, Jain University, Bangalore, India.

### ABSTRACT

Hepatitis B virus (HBV) is a public health problem worldwide. It is highly endemic in Asia and Sub-Saharan Africa. Horizontal and perinatal transmissions are thought to be major modes of transmission in these countries. Therefore, the present study was carried out to assess the role of HBV in apparently healthy pregnant women and to assess the impact of replicating status of HBV in asymptomatic carrier mothers. Seroprevalence of Hepatitis B virus was determined among pregnant women attending antenatal clinic. Serum samples were collected and screened for HB<sub>s</sub>Ag, HB<sub>e</sub>Agand anti-HB<sub>e</sub> markers using Enzyme Linked Immunosorbent Assay (ELISA). The overall prevalence of hepatitis B surface antigen among pregnant women was 7.8%. The participant women were mostly of age group of 21-25 years. Infants born to asymptomatic HB<sub>s</sub>Ag carrier mothers were followed up for 3 months to determine the vertical transmission of HBV infection. The rate of transmission of infection from HB<sub>s</sub>Ag positive mothers to infants was 25% irrespective of HB<sub>s</sub>Ag status, whereas it was nearly 100% in case of HB<sub>s</sub>Ag positive mothers, supporting the conclusion that perinatal transmission is the major mode of transmission. The study revealed that prevalence of HB<sub>s</sub>Ag carrier state in the study area was significant enough to start routine antenatal screening for HB<sub>s</sub>Ag. Therefore, screening and immunization of pregnant women and infants should be made mandatory in the antenatal and postnatal programmes in hospitals, for the eradication of HBV infection.

Keywords: prevalence, HBV infection, HB<sub>s</sub>Ag, HB<sub>e</sub>Ag, anti-HB<sub>e</sub>

#### \*Corresponding author

Sasirekha Bakthavatchalu Department of Microbiology, Center for PG Studies, Jain University, 18/3, 9th Main, Jayanagar 3<sup>rd</sup> block, Bangalore –560011, India. Phone: +91 99805 38838 Email: nagsrani@yahoo.co.in

## INTRODUCTION

Hepatitis B virus (HBV) occurs Worldwide and constitutes a serious public health concern. Globally, more than two billion people have been infected with HBV and 350 million people remain infected chronically and become carriers of the virus, and 1.5 million deaths occur from HBV related liver diseases, including end stage cirrhosis and hepatocellular carcinoma each year<sup>1</sup>. It has been estimated that up to 10% of the 350 million Hepatitis B chronic carriers arise in India. The carrier rate of Hepatitis B in India may vary in the different regions and is often quoted as being 4.7%<sup>1-3</sup>. In areas of intermediate prevalence like India<sup>4-6</sup> vertical transmission of infection from mother to infants is very important route of HBV<sup>7-9</sup>. It has been reported that 10-20% of women seropositive for HB<sub>s</sub>Ag transmit the virus to their neonates but the risk of acquiring infection for a neonate can be as high as 85-90%, if the mother is HB<sub>e</sub>Ag positive<sup>10,11</sup>. It is generally agreed that risk of chronic infection with HBV is inversely related to age of onset of infection. The probability of developing the carrier state following HBV infection is greatest in early life and decreases with increasing age. Up to 90% of babies born to carrier mothers become carriers and they are at a very high risk of developing chronic liver disease at a younger age<sup>12</sup> and represent the most important reservoir of infection in the community<sup>13</sup>. Thus prevention of transmission of infection in this group would be helpful to decrease overall carrier rate. Prevention of perinatal transmission is possible with immunoprophylaxis of risk babies shortly after birth<sup>14</sup>. Prenatal HB<sub>s</sub>Ag screening would identify infected mothers and thus allow immunization of their newborns with hepatitis B immune globulin (HBIG) and hepatitis B vaccine, a regimen that is 85-95% effective in preventing development of chronic HBV carrier state<sup>15-17</sup>. The present study was therefore carried out to assess the role of HBV in apparently healthy pregnant women and to study the impact of replicating status of HBV in asymptomatic carrier mothers in determining the vertical transmission of HBV to the children born to them.

## MATERIALS AND METHODS

The study population consisted of 500 asymptomatic pregnant women attending antenatal clinics at the Institute of Obstetrics and Gynecology, Egmore, Chennai. The study was conducted for a period of 1 year. Pregnant women were informed about the study, potential benefits for their current and future pregnancies and verbal consent was obtained from them. Using a standard questionnaire, all subjects

were questioned for risk factors: history of abortion, caesarian, tattooing, blood/blood - product transfusion, surgical operation, and previous hepatitis of unclear etiology.

In all cases, maternal venous blood and cord blood samples were collected. After initial screening tests of maternal samples for HB<sub>s</sub>Ag, all sera were stored at -20<sup>°</sup>C. the HB<sub>s</sub>Ag positive maternal samples were subsequently tested for HB<sub>e</sub>Ag, anti-HB<sub>e</sub>. Cord sera from babies born to HB<sub>s</sub>Ag positive mothers were also tested for HB<sub>s</sub>Ag, HB<sub>e</sub>Ag. All positive test results were rechecked. Sera were tested for HB<sub>s</sub>Ag, HB<sub>e</sub>Ag, anti-HB<sub>e</sub> with commercially available enzyme linked immunoassays (Organon Teknika, Netherlands). All laboratory tests were performed following the manufactures' instructions.

#### RESULTS

When the rate of  $HB_sAg$  positivity in the study group was analyzed, it showed that out of the 500 pregnant women tested, 39 were positive for  $HB_sAg$  giving an overall seroprevalence of 7.8%. The results of the seroprevalence study are presented in Table No.1. Most of the studied women (223, 44.6%) were in the 2<sup>nd</sup> trimester of gestation. This group also had the highest  $HB_sAg$  seropositivity of 11.65% (226/223), followed by those in the 3<sup>rd</sup> trimester of gestation with 9 (5.35%) of 168 screened while the 1<sup>st</sup> trimester had the least prevalence of 4 (3.66%) of the 109 screened (Table No. 2).

| S.No | Details                                                       | Number<br>tested | HB <sub>s</sub> Ag positivity |     | 95% CI       |
|------|---------------------------------------------------------------|------------------|-------------------------------|-----|--------------|
|      |                                                               |                  | Number                        | %   |              |
| 1.   | Asymptomatic<br>pregnant<br>women                             | 500              | 39                            | 7.8 | (5.45-10.15) |
| 2.   | Children born<br>to HB <sub>s</sub> Ag<br>positive<br>mothers | 16               | 4                             | 25  | (3.78-46.22) |

 Table No. 1: Prevalence of HB<sub>s</sub>Ag in different study groups

| Trimester             | No. screened | No. positive | Prevalence (%) | 95% CI     |
|-----------------------|--------------|--------------|----------------|------------|
| $1^{st}$ (1-3 months) | 109          | 4            | 3.66           | 0.14-7.2   |
| $2^{nd}$ (4-6 months) | 223          | 26           | 11.65          | 7.45-15.87 |
| $3^{rd}$ (7-9 months) | 168          | 09           | 5.35           | 1.95-8.77  |
| Total                 | 500          | 39           | 7.8            | 5.45-10.15 |

Table No. 2: Prevalence of HB<sub>s</sub>Ag based on trimester

On the basis of age groups, the highest prevalence rate (12%) was found among 21-25 years age group. The results show that there is increase in HB<sub>s</sub>Ag titers with increase in age up to 25 years followed by a decline. At least one seropositive case for HBsAg was found in all age groups except in the age groups 41 - 45 association between age and seroprevalence of Hepatitis B infection (p<0.05) (Table No.3). None of the risk factors was significantly associated with detection of HB<sub>s</sub>Ag among the pregnant women. 85% of the HB<sub>s</sub>Ag positive subjects (33 of 39) had any one of the risk factors for hepatitis B infection, e.g., history of jaundice, surgery, or blood transfusion. The prevalence rate associated with predisposing factors showed that those who had previous history of abortion had the highest HB<sub>s</sub>Ag prevalence rate of 18%, followed by HB<sub>s</sub>Ag positive mothers (15%) with history of jaundice and those who had blood transfusion (12.8%). The results are shown in Table No. 4.

| Prevalence<br>(%) |  |
|-------------------|--|
| 3.38              |  |
| 12.4              |  |
| 10.92             |  |
| 8.24              |  |
| 1.63              |  |
| 0                 |  |
| 7.8               |  |
| 110               |  |

Table No. 3: Age specific seroprevalence of HB sAg in asymptomatic pregnant women in Chennai (n=500)

 $X^2 = 19.42$ , df = 5, p<0.05

| Risk factors                  |     | No.<br>screened | HB <sub>s</sub> Ag |
|-------------------------------|-----|-----------------|--------------------|
|                               | Yes | 39              | 6 (15.3)           |
| Previous history of Jaundice  | No  | 461             | 33 (7.1)           |
|                               | Yes | 39              | 03 (7.7)           |
| Previous history of hepatitis | No  | 461             | 36 (7.8)           |
|                               | Yes | 39              | 05 (12.8)          |
| History of blood transfusion  | No  | 461             | 34 (7.5)           |
| Use of abortion               | Yes | 39              | 07 (18)            |
|                               | No  | 461             | 32 (7)             |
| Practice of tattooing         | Yes | 39              | 03 (7.7)           |
| Theoree of futtooning         | No  | 461             | 36 (7.8)           |
|                               | Yes | 39              | 03 (7.6)           |
| History of surgery            | No  | 461             | 36 (7.8)           |
|                               | Yes | 39              | 04 (10.2)          |
| History of hospitalization    | No  | 461             | 36 (7.8)           |

# Table No. 4: Assessment of risk of hepatitis B virus infection among HB<sub>s</sub>Ag positive and HB<sub>s</sub>Ag negative pregnant women

In order to analyze the replicative status of the mother we did perform HB<sub>e</sub>Ag and anti- HB<sub>e</sub> screening. Of the 39 HB<sub>s</sub>Ag positive samples, 16 (41.0%) were HB<sub>e</sub>Ag positive, 8 (20.5%) were anti- HB<sub>e</sub> positive, 6 (15.33%) were HB<sub>e</sub>Ag and anti- HB<sub>e</sub> positive and rest 9 (23.0%) were negative for both HB<sub>e</sub>Ag and anti- HB<sub>e</sub>. Hence, 16 out of 500 (3.2%) of the study population were found to be infectious, with 70-90% chance of transmitting infection to their newborns. The 16 babies born to HB<sub>s</sub>Ag positive mothers, 4 had detectable HB<sub>s</sub>Ag in cord blood samples. Out of the 4 HB<sub>s</sub>Ag positive children, 3 children born to HB<sub>e</sub>Ag positive mothers. Surprisingly, one anti- HB<sub>e</sub> positive mother also transmitted HBV to her child. None of the 16 children born to HB<sub>s</sub>Ag positive mothers was HB<sub>e</sub>Ag positive (Table No.5)

| S.No | Mothers HB <sub>e</sub> Ag/<br>anti- HB <sub>e</sub> Status | No. positive<br>( <i>n</i> = 39) | No. of<br>infants<br>( <i>n</i> = 16) | No. of infants<br>infected with<br>HB <sub>s</sub> Ag | No. of<br>months<br>followed up | Risk of<br>transmission<br>(%) |
|------|-------------------------------------------------------------|----------------------------------|---------------------------------------|-------------------------------------------------------|---------------------------------|--------------------------------|
| 1    | HB <sub>e</sub> Ag+<br>Anti- HB <sub>e</sub> <sup>-</sup>   | 16                               | 3                                     | 3                                                     | 5                               | 100                            |
| 2    | HB <sub>e</sub> Ag–<br>Anti- HB <sub>e</sub> <sup>+</sup>   | 8                                | 4                                     | 1                                                     | 5                               | 25                             |
| 3    | $HB_eAg+$<br>Anti- $HB_e^+$                                 | 6                                | 4                                     | -                                                     | 5                               | -                              |
| 4    | HB <sub>e</sub> Ag–<br>Anti- HB <sub>e</sub> -              | 9                                | 5                                     | -                                                     | 5                               | -                              |

| Table No. 5: Relationship between maternal | ll HB <sub>e</sub> Ag / Anti HB <sub>e</sub> status and r | risk of perinatal HBV infection in infants. |
|--------------------------------------------|-----------------------------------------------------------|---------------------------------------------|
|--------------------------------------------|-----------------------------------------------------------|---------------------------------------------|

#### DISCUSSION

India is an area of intermediate HBV endemicity, with the total number of HBV carriers in the general population estimated to be around 43 million<sup>18</sup>. The available data suggests that the majority of the carrier states occur in childhood<sup>19</sup>. The HB<sub>s</sub>Ag positivity in antenatal pregnant women in India ranges from 1-12.3% with a mean of 4.22  $\%^{20}$ . In the present study, the prevalence of HB<sub>s</sub>Ag among the pregnant women was 7.8%, this is in accordance with reported average HB<sub>s</sub>Ag prevalence rate, which conforms to India's status as an endemicity area as reported previously.

In this study, women on their second trimester of pregnancy had the highest prevalence of 18.4%, contrary to observations of Lilavati *et al*<sup>21</sup> that the third trimester in pregnant women had the highest prevalence rate. The age of acquiring infection was found to be the major determinant of the incidence of HBV<sup>22</sup>. The greatest prevalence of infection occurs among individuals of reproductive age. This can be explained by the greater probability of exposure of these women to risk factors. When age specific prevalence was considered, age group 21-25 had a higher prevalence (12.4%). This finding is in contrast to HBV infection prevalence, which normally shows a linear rise with age reported by other investigators in pregnant women and in other studies<sup>23-25</sup>. This could be due to facts that we had a less number of subjects in the older age group. Such discrepancy could be due to the differences in study design, population and geographical distribution.

This study revealed an association between HB<sub>s</sub>Ag positivity and history of abortion. Having history of abortion increased the risk of having HBV infection compared with those who had not suffered such experience. As known, abortion is directly related to sexually active women, and one most important

mode of transmission for HBV is exposure to heterosexual partners<sup>26</sup>. Therefore, other reasons such as instrumentation during abortion and related activities may also serve as source of exposure.

Prevalence of HB<sub>s</sub>Ag positive mothers in our study was 41%. However the reported HB<sub>e</sub>Ag positive rates among HB<sub>s</sub>Ag positive pregnant women in India varies between 8% and 47%. Most studies show positive rates towards the lower end of this range<sup>27-29</sup>. Our results were in accordance with reported average HB<sub>e</sub>Ag prevalence rate, on comparison of our results with other studies from different countries on pregnant women showed variable results. This difference in hepatitis epidemiology in pregnant women in these countries could be of the regional variation, study population, traditional operation, sexual practices and medical exposure.

Maternal HB<sub>e</sub>Ag positivity in perinatal period is of great importance for the vertical transmission of HBV infection resulting in extremely higher rates of mother to infant transmission compared to infant born from HB<sub>e</sub>Ag negative mothers<sup>30-32</sup>. The transmission rate of HBV in HB<sub>e</sub>Ag positive mothers to their children is in the range of 58-90% with a mean of 73.76%. Transmission by mothers who are only HB<sub>s</sub>Ag positive (HB<sub>e</sub>Ag and anti- HB<sub>e</sub> negative) ranges from 5.5-20% with a mean of 15.36%<sup>33</sup>. In our study, on analysis of impact of mothers, HB<sub>e</sub>Ag positivity on HBV transmission to their children as reported earlier.

The study concludes that there is a significant HBV carrier problem in pregnant women in Tamilnadu.  $HB_eAg$  positive mothers transmit HBV to a higher degree to their children, anti-  $HB_e$  positivity does not rule out the possibility of HBV transmission. The study further confirms that HBV vaccination has to be given to all children born to  $HB_sAg$  carrier mothers.

### REFERENCES

- 1. Indian Association for study of the Liver (INSAL). Hepatitis B in India; therapeutic options and prevention strategies-Consensus statement. Ind. J. Gestroenterol. 2009; 19: C4-C66.
- 2. Lodha R, Kabra SK. Hepatitis B in India. A review of disease epidemiology. Indian. Paediatr. 2001; 38: 1322-1325.
- 3. Batham A, Narula D, Toteja T et al. Systematic review and meta-analysis of prevalence of hepatitis B in India. Indian Paediatr. 2007; 44: 663-674.

- 4. Margolis HS., Altrer, M.J., Holder, S.C., Hepatitis B: Evolving epidemiology and implication for control. Sem. Liv. Dis. 1991; 112: 84-90.
- 5. Sobeslavsky O. Prevalence of markers of hepatitis B virus infection in various countries- a WHO collaborative study. Bull. WHO. 1980; 59: 621-628.
- Tendon BN, Irshad M, Raju M, Mathur GP, Rao MN. Prevalence of HB<sub>s</sub>Ag and anti-HB<sub>s</sub> in children and strategy suggested for immunization in India. Indian J. Med. Res. 1991; 93: 337-339.
- 7. Schweitzer IL. Vertical transmission of Hepatitis B surface antigen. Am. J. Med. Sci. 1975; 270: 287-291.
- 8. Ghendon Y. WHO strategy for the global elimination of new cases of hepatitis B. Vaccine. 1990; 8: 129-132.
- 9. Mushahwar IK, Drenstag JL, Pollesky HF et al. Interpretation of various serological profiles of hepatitis B virus infection. Am. J. Clin. Path. 1981; 76: 773-777.
- 10. Beasley RP, Hwang LY. Postnatal infectivity of HB<sub>s</sub>Ag carrier mothers. J. Infect. Dis. 1983; 147: 185-190.
- 11. Guha DK, Mahajan J, Agarwal SK. Vertical transmission of hepatitis B virus. Indian Paediatr. 1988; 25: 409-416.
- 12. Joshi N, Kumar A. Immunoprophylaxis of hepatitis B virus infection. Indian J. Med. Microbiol. 2001; 19: 172-183.
- 13. Chakravati A, Rawat D, Jain M. A study on the perinatal transmission of the hepatitis B virus. Indian J. Med. Microbiol. 2005; 23(2): 128-130.
- 14. Hamdani- Belghiti S, Bouazzaou NL. Mother-child transmission of hepatitis B virus. State of problem and prevention. Arch. Paediatr. 2007; 7: 879-882.
- 15. Beasley RP, Hwang LY, Lee GCY et al. Prevention of perinatally transmitted hepatitis B virus infections with hepatitis B immune globulin and hepatitis B vaccine. Lancet. 1983; 2: 1099-1102.
- 16. Wong VCW, Ip HMH, Reesink HW et al. Prevention of the HBsAg carrier state in newborn infants of mothers who are chronic carriers of HBsAg and HBeAg by administration of hepatitis B vaccine and hepatitis B immunoglobulin: double-blind randomized placebo-controlled study. Lancet. 1984; 1: 921-926.
- 17. Stevens CE, Taylor PE, Tong MJ et al. Yeast-recombinant hepatitis B vaccine: efficacy with hepatitis B immune globulin in prevention of perinatal hepatitis B virus transmission. JAMA. 1987; 257: 2612-2616.

- 18. Thyagarajan SP, Hari R, Murugavel KG. Prevalence of hepatitis B virus infection in general population of India. Indian J. Gastroenterol. 2000; 19: C10.
- 19. Kant L., Hall AJ. Epidemiology of childhood hepatitis B in India: vaccination related issues. Indian J. Paediatr. 1995; 62: 635-653.
- 20. Sharma R, Malik A, Rattan AI et al. Hepatitis B virus infection in pregnant women and its transmission to infants. J. Trop. Paediatr. 1996; 42: 352-354.
- 21. Lilavati G, Chandra MP, Umakanta N. Incidence of HB<sub>s</sub>Ag carrier state in pregnancy in Eastern Orissa. J.Obstetrics and Gynaecology. 2004; 54(2): 136-138.
- 22. Zali MR, Mohammed K, Noorbala AA, Noorimayer B, Shahraz S. Rate of hepatitis B seropositivity following mass vaccination in Islamic Republic of Iran. East Mediterranean Health Journal. 2005; 11: 62-67.
- 23. Kefence H, Rapicetta M, Rossi GB et al. Ethiopian national hepatitis B study. J. Med. Virol. 1988; 24(1): 75-84.
- 24. Abebe A, Nokes DJ, Dejene A et al. Seroepidemilolgy of hepatitis B virus in Addis Ababa, Ethiopia: transmission patterns and vaccine control. Epidemiol. Infect. 2003; 131(1): 757-770.
- 25. Lin HH, Kao JH, Chang TC, Hsu HY, Chen DS. Secular trend of age specific prevalence of hepatitis B surface and e antigenemia in pregnant in Taiwan. J. Med. Virol. 2003; 69(4): 466-70.
- 26. Duncan ME, Tibaus G, Pelger A. Prevalence and significance of sexually transmitted diseases among women attending clinics in Addis Ababa. Ethiop. J. Health Dev. 1995; 9: 31-40.
- Prakash C, Sharma RS, Bhatia R, Verghese T, Datta KK. Prevalence of North India of hepatitis B carrier state amongst pregnant women. Southeast Asian J. Trop. Med. Public Health. 1998; 29: 80-84.
- 28. Mittal SK, Rao S, Rastogi A, Aggarwal V, Kumari S. Hepatitis B- potential of perinatal transmission in India. Trop. Gastroenterol. 1996; 17: 190-192.
- 29. Gupta I, Segal A, Sehgal R. Ganguly NK. Vertical transmission of hepatitis B in north India. J. Hyg. Epidemiol. microbial Immunol. 1992; 36: 263-267.
- 30. Soderstrom A, Norkrans G, Lindh M. Hepatitis B virus DNA during pregnancy and post partum: aspects on vertical transmission. Scand. J. Infect. Dis. 2003; 35: 814-819.
- 31. Wang Z, Zhang J, Yang H et al. Quantitative analysis of HBV DNA level and HB<sub>e</sub>Ag titer in hepatitis B surface antigen positive mothers and their babies: HB<sub>e</sub>Ag passage through the placenta and the rate of decay in babies. J. Med. Virol. 2003; 71: 360-366.

- 32. Stevens CE, Neurath RA, Beasley RP, Szmuness W. HB<sub>e</sub>Ag and anti-HBs detection by radioimmunoassay: correlation with vertical transmission of hepatitis B virus in Taiwan. J. Med. Virol. 1979; 3: 237-241.
- 33. Nayak NC, Panda SK, Zuckerman AJ, Bhan MK, Guha DK. Dynamics and impact of perinatal transmission of hepatitis B virus in North India. J. Med. Virol. 1984; 21: 137-145.